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Abstract—This paper investigates evolutionary approaches to
enable robotic agents to learn strategies for energy-efficient
navigation through complex terrain, consisting of water and
different heights. Agents, equipped with a low-resolution depth
sensor, must learn how to navigate between a randomly chosen
start/end position in a procedurally generated world, along a
path which minimises energy usage. The solution that consistently
emerged, was an agent that followed the contours of the map,
resulting in near-optimal performance in little evolutionary time.
Further, initial experiments with a real robot and Kinect sensor
showed that the simulated model successfully predicted the
correct movement that would be needed to follow contours. This
demonstrated both that the evolved strategies are robust to noise
and capable of crossing the reality gap. We suggest that this
robustness is due to the use of a low-resolution sensor.
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I. INTRODUCTION

Nearly all organisms are limited at some point when it
comes to movement. For example, an octopus can fit through
any aperture but only if it is bigger than its beak [1]. These en-
vironmental barriers constrain an organism’s ability to traverse
terrain. When a path looks too arduous, organisms will often
choose an easier route. For an autonomous robot travelling
through complex terrain, the most energy-efficient path might
not be the one that is most direct, but instead one that avoids
unnecessary climbing.

While path planning algorithms can solve this problem [2],
they require an accurate terrain model of the world. If there
is no map, or the world is dynamic, the path must be decided
using local information. Here, we take this approach and use
a genetic algorithm to evolve a controller for a simulated
robot equipped with a claw-style wheel-leg hybrid known as
whegs and a Kinect sensor to enable it to navigate within
an environment consisting of rocks and flatland. The agent
is set a target direction and had to reach it while avoiding
water and steep height within the environment. Success was
defined as reaching the goal while expending as little energy
as possible. If the agent gets stuck it will receive no reward
and if it makes unnecessary movements the amount of reward
it received will be reduced. The agent is controlled by a
two layer neural network, which receives inputs from a low-
resolution depth sensor and produces outputs representing the
desired direction of movement. Following a straight path to
the goal is the obvious solution, but even with such low
resolution and a small network, agents that perform contour
following were consistently evolved through trials. Moreover,

rather than being a problem for evolution, we suggest that
the low-resolution sensor enables robust behaviour in the face
of noise and crucially allows the successful transfer of the
solution to the real robot.

II. METHODS

A. Simulated environment

Our agent simulates the whegged robot shown in figure 1
with information about the current terrain in the direction of
travel provided by a low-resolution depth sensor. All trials
were performed in 3D terrains – similar to those shown in
figure 2 – generated using ten octaves of Perlin noise [3]. In
each trial, a start position and end goal were placed at random
locations in the environment, 10 units apart. To add additional
complexity, we defined any regions below a set height as water,
which acted as an in-penetrable obstacle. A first person depth
view was generated from the terrain by casting rays outwards
from the agent at 20° intervals across a field-of-view of 100°
in azimuth, at 5 different height levels. This generates a 5× 5
image of the terrain within 5 units of the front of the robot.
We used a depth sensor because it would detect structure
without disturbance from variations of light levels. We hoped
that using such a low resolution image will not only reduce
the computation required to train and use the model but might
also increase robustness.

B. Neural network

Our network architecture consisted of one 2D convolutional
layer with 3 × 3 filters. Its output was flattened into a linear
layer which also had two additional input nodes providing the
direction vector to the end goal, supplying the model with
the direction the agent should be travelling. Finally, the linear
layer was densely connected to an output layer with 8 nodes,
representing movements in worldspace that the agent could
take. Each timestep, the agent moves in the direction specified
by the output node with the largest value chosen as the next
direction and a step is moved in that direction, with the new
angle facing set.

C. Evolutionary training

We optimised the neural network using the Microbial ge-
netic algorithm [4] and a fitness function ((100− energy)×
0.003+ (10− endDist)× 0.007)× 100 such that minimising
distance is worth 70% of the fitness, and minimising energy
30%. Additionally, if the agent collides with water or ends up



Fig. 1. Robotic chassis used for physical trials.
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Fig. 2. Example trials in simulated environment. Red and blue circles show
agent start and end positions respectively and lines show path taken.

further away from the target than it started, fitness is set to
0. More energy is used moving up hill than down hill, or on
solid ground and energy usage is accumulated over every step.

D. Physical robot

The robot chassis shown in figure 1 was driven by con-
tinuous rotation servos, attached to claw-style wheels known
as Whegs, inspired by cockroach locomotion [5]. In order to
match the simulation, we used an Xbox Kinect time-of-flight
sensor. We cropped out the central 200 × 400 pixels of the
depth image and downsampled this to 5 × 5 to match the
field-of-view and input resolution of our simulated agent.

III. RESULTS

We evolved 20 agents for 500 generations and evaluated
their performance by averaging the fitness across three trials
with random start/end positions. The mean fitness of successful
agents was 89% and this was always achieved in <100 gener-
ations. Figure 2 shows typical behaviour and it is interesting
to see that contour-following has emerged – a strategy which
avoids energy loss and water.

To see if our trained models are robust enough to cross the
reality gap, we tested them on real-world data recorded from
the Kinect sensor. As figure 3A-C illustrates, our preprocessing
successfully extract a low-resolution depth map of the scene.
The real world depth imaging was found through qualitative
inspection of the data to not always be as clear as the
simulated depth imaging. Real world noise could mistake
distance. However, despite this low resolution image and real
world noise, the model produces predominantly the correct
directions. In this instance, Figure 3D shows the agent should
move left, which is away from an immediate clash with the
rocks. Indeed, in the majority of trials, the robot picked a
direction away from complex terrain to an accuracy of 74% (as
judged by qualitatively marking expected predictions against

Fig. 3. (A) RGB (B) depth image from Kinect. (C) Depth image downsam-
pled to 5× 5 (yellow=far, black=near). (D) Movement direction from model.

incorrect predictions) suggesting that the solution will cross
the reality gap.

IV. CONCLUSION

In this paper, we have shown that agents using a low-
resolution depth sensor can successfully avoid collision with
environmental hazards and find paths across complex terrain
that minimise energy usage through emergent contour fol-
lowing. Using such a low resolution depth image not only
reduced the computation required to train and use the model
but – as has been demonstrated in insect-inspired visual
navigation research [6] – improves robustness to noise by
only retaining low-frequency information. We demonstrated
this by taking models evolved in simulation across the reality
gap and showing that they were able to avoid obstacles in
the real world. The success of this approach suggests that
low-resolution sensing might be an an interesting alternative
to other more complex Sim2real approaches [7] and we also
believe is key to how insects are able to navigate robustly
despite very large restrictions on energy and neural resources.
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